

Webinar Series

Data Use Skills Featuring Data from Natural History Collections

September 21-November 30, 2022

https://www.idigbio.org/content/biotaphy-2022-webinar-series

iDigBio:

https://www.idigbio.org/conte nt/biotaphy-2022-webinar-

<u>series</u>

iDigBio.org

iDigBio			About	iDigBio	Research	Technical Inform	Log In Sign Up
About iDigBio Collaborators	Events	News	Contact	Site Map	IDEA		
		Biotal	Phy 202	2 Webi	nar Serie	2S	
		Add this eve	nt to your calenda	ar:			
		Tue, 09/13	3/2022 - 9:03a	m jvgoodv	vin		
Researchers Browse our specimen portal	→	Bi	ota	Ph	Do you v and avai	vant to learn how to us lable software to addre	se occurrence data ess questions in
Collections Staff Learn how your collection can benefit from our work	€	the option	is for self-teac	hing? Would	chance t	o take a course and a prporate this sort of re	re overwhelmed by search into your
Teachers & Students Learning resources &	-	then join t from biolo	ut don't have t he BiotaPhy P ogical question	roject for an to data acq	e the materials a upcoming serie uisition and clea	and examples? If eithers as of 10 webinars design aning to analysis and in	er of these applies, gned to take you nterpretation!
opportunities to engage		BiotaPhy i about the	is a collaborat project and <mark>re</mark>	ion among i[<mark>gister for t</mark> h	DigBio, LifeMap <mark>le webinar seri</mark>	per, and the Open Tree <mark>es here</mark> .	e of Life. Learn more
		Webinars All webin	will be held \ ars will be red	Vednesdays	at 12:30 pm E made available	astern time, beginnii , so you won't get be	ng September 21. chind if you need to
		miss a se	ssion. The so	chedule is:			
		Webinar (Click here	0: Terms, Cond e for PDF	cepts, Data F	ormats – A Tuto	orial for Background	
		Webinar 1 Modeling	1: Introduction and Analysis	: Scope and	Research Poter	ntial for Multidisciplina	ry Biodiversity
		Date: 09/2	21/2022				

Thank You

Maria Cortez Aimee Stewart

Jill Goodwin Gil Nelson

Webinar 8

Introducing Presence-Absence Matrices for Large Scale Analyses

Learn how to calculate basic diversity statistics and how to utilize a Presence -Absence Matrix (PAM) to optimize calculations involving multiple taxa

Biological Objectives:

- $\checkmark\,$ Explore the theory on basic diversity statistics
 - ✓ Alpha diversity
 - ✓ Beta diversity
 - ✓ Gamma diversity

Learning Objectives

Technical Objectives:

Build a grid to analyze a multi-species dataset

- 1. Understand what a grid is
- 2. Understand the effects of grid scale

Learning Objectives

Technical Objectives:

Webinar 8

Encode Layers into a Presence-Absence matrix

(PAM) for multi-species analysis

- 1. Learn what a PAM is in a biogeographic context
- 2. Learn how to create a PAM
- 3. Understand PAM as a data model

	А	В	С	BNH	BNI
1				Colobanthus apetalus	Colobanthus affinis
06	3004	144.25	-27.75	0	0
07	3005	144.75	-27.75	0	0
80	3006	145.25	-27.75	0	0
09	3007	145.75	-27.75	0	0
10	3008	146.25	-27.75	0	0
11	3009	146.75	-27.75	0	0
12	3010	147.25	-27.75	0	0
13	3011	147.75	-27.75	0	0
14	3012	148.25	-27.75	0	0
15	3013	148.75	-27.75	0	0
16	3014	149.25	-27.75	0	0
17	3015	149.75	-27.75	0	0
18	3016	150.25	-27.75	0	0
19	3017	150.75	-27.75	0	0
20	3018	151.25	-27.75	0	0
21	3019	151.75	-27.75	0	0
22	3020	152.25	-27.75	0	0
23	3021	152.75	-27.75	0	0
24	3022	153.25	-27.75	0	0

Learning Objectives

Technical Objectives:

Calculate statistics for a PAM

1. Learn what some of the stats are: alpha, beta and gamma

Webinar 8

Webinar organization

- 1. Exploring Concepts: Biological background on diversity statistics
- 2. Exploring Concepts: How to ...
 - a. build a grid
 - b. encode SDM layers
 - c. calculate statistics (alpha and beta diversity)
- 3. Exercises: Practicing ...
 - a. building a grid
 - b. encoding SDM layers
 - c. calculating statistics (alpha and beta diversity)
- 4. Session Summary, Q&A and Discussion

Webinar 8

VEGETATION OF THE SISKIYOU MOUNTAINS, OREGON AND CALIFORNIA¹

Webinar 8

VEGETATION OF THE SISKIYOU MOUNTAINS, OREGON AND CALIFORNIA¹

R. H. WHITTAKER Biology Department, Brooklyn College, Brooklyn 10, N. Y. "The richness in species of a particular stand or community, or a given stratum or group of organisms in a stand."

BiotePhy

Webinar 8

VEGETATION OF THE SISKIYOU MOUNTAINS, OREGON AND CALIFORNIA¹

R. H. WHITTAKER Biology Department, Brooklyn College, Brooklyn 10, N. Y.

"The extent of change of community composition, or degree of community differentiation, in relation to a complex gradient of environment, or a pattern of environments"

BiotePhy

Anja Knaebel, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Webinar 8

VEGETATION OF THE SISKIYOU MOUNTAINS, OREGON AND CALIFORNIA¹

R. H. WHITTAKER Biology Department, Brooklyn College, Brooklyn 10, N. Y.

"The species-diversity of a number of community samples, for some range of environments, which have been combined, so that the diversity value is a resultant of both alpha and beta diversities of these samples."

Anja Knaebel, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Webinar 8

BiotePhy

Ecography 33: 2–22, 2010 doi: 10.1111/j.1600-0587.2009.05880.x © 2010 The Author. Journal compilation © 2010 Ecography Subject Editor: Robert K. Colwell. Accepted 18 November 2009

A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity

Hanna Tuomisto

H. Tuomisto (hanna.tuomisto@utu.fi), Dept of Biology, FI-20014 Univ. of Turku, Finland.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1600-0587.2009.05880.x

- Definition of beta diversity can be confusing!!!
- Diagram works as a simplified

version of species diversity metrics.

Webinar 8

Exploring Concepts: Build a Grid

- Understand what a grid is
- Geospatial grid built in vector format (later
- saved as a shapefile).
- Grid is used for defining cells as polygons.
- A grid defines the geographic extent for a
- PAM or other biogeographic matrix, used for
- multi-species analyses.

Webingr 8

Biophy

17

Exploring Concepts: Build a Grid

- Understand the effects of grid scale ...
- Defining the grid is very important Geography
- based studies rely on scale which directly
- impacts analyses/results. Also, defining grid
- scale is done considering the resolution of SDMs
- layers. Usually, the grid resolution is coarser
- than the SDMs layers!

- Learn how to create a PAM matrix ...
- Polygonal cells in a grid can be intersected with other geospatial data layers, such as SDMs!
- To intersect SDMs with a grid, it is necessary to generalize across
- different pixel values in the SDM layer contained in a single grid cell.

Learn how to create a PAM matrix

Each pixel in an SDM receives a score from 0 = 1 that represents

the probability of occurrence of a given species in that pixel.

 SDM LAYER
 0.5
 0.8
 0.9
 L 0
 Each pixel in an SDM is delimited by a unique latitude at the Y axis and longitude at the X axis.

Learn how to create a PAM matrix ...

Values over 0.25 usually account for presence; thus, generalization

across these pixels leads to accounting for presence in the grid cell!

- Learn how to create a PAM matrix ...
- To intersect multiple two-
- dimensional SDM layers
- with the same grid cell, it
- is necessary to stack
- these layers into a cube.

- Learn what a PAM is in a biogeographic context ...
- Then, this cube is flattened
- back into a 2-dimensional
- multi-layer matrix, by
- transforming each SDM layer
- into a matrix of a single
- column with multiple rows.

Each small square corresponds to a cell grid

SDM LAYER For a single

- Learn what a PAM is in a biogeographic context
- Then, this cube is flattened
- back into a 2-dimensional
- multi-layer matrix, by
- transforming each SDM layer
- into a matrix of a single
- column with multiple rows.

Understand PAM as a data model

	А	В	C	BNH	BNI	BNJ	BNK	BNI	BNM	BNN
1				Colobanthus apetalus	Colobanthus affinis	Rhagodia spinescens	Atriplex limbata	Einadia hastata	Atriplex incrassata	Atriplex nana
3006	3004	144.25	-27.75	0	0	1	1	0	0	0
3007	3005	144.75	-27.75	0	0	1	1	0	0	0
3008	3006	145.25	-27.75	0	0	1	1	0	0	0
3009	3007	145.75	-27.75	0	0	1	1	0	0	0
3010	3008	146.25	-27.75	0	0	1	0	0	0	0
3011	3009	146.75	-27.75	0	0	1	0	0	0	0
3012	3010	147.25	-27.75	0	0	1	0	0	0	0
3013	3011	147.75	-27.75	0	0	1	0	0	0	0
3014	3012	148.25	-27.75	0	0	1	0	0	0	0
3015	3013	148.75	-27.75	0	0	1	0	0	0	0
3016	3014	149.25	-27.75	0	0	1	0	0	0	0
3017	3015	149.75	-27.75	0	0	1	0	0	0	0
3018	3016	150.25	-27.75	0	0	1	0	0	0	0
3019	3017	150.75	-27.75	0	0	1	0	0	0	0
3020	3018	151.25	-27.75	0	0	0	0	0	0	0
3021	3019	151.75	-27.75	0	0	0	0	0	0	0
3022	3020	152.25	-27.75	0	0	0	0	0	0	0
3023	3021	152.75	-27.75	0	0	0	0	1	0	0
3024	3022	153.25	-27.75	0	0	0	0	0	0	0

COLUMNS = SPECIES

Understand PAM as a data model

	A	В	С	BNH	BNI	BNJ	BNK	BNL	BNM	BNN
1				Colobanthus apetalus	Colobanthus affinis	Rhagodia spinescens	Atriplex limbata	Einadia hastata	Atriplex incrassata	Atriplex nana
3006	3004	144.25	-27.75	0	0	1	1	0	0	0
3007	3005	144.75	-27.75	0	0	1	1	0	0	0
3008	3006	145.25	-27.75	0	0	1	1	0	0	0
3009	3007	145.75	-27.75	0	0	1	1	0	0	0
3010	3008	146.25	-27.75	0	0	1	0	0	0	0
3011	3009	146.75	-27.75	0	0	1	0	0	0	0
3012	3010	147.25	-27.75	0	0	1	0	0	0	0
3013	3011	147.75	-27.75	0	0	1	0	0	0	0
3014	3012	148.25	-27.75	0	0	1	0	0	0	0
3015	3013	148.75	-27.75	0	0	1	0	0	0	0
3016	3014	149.25	-27.75	0	0	1	0	0	0	0
3017	3015	149.75	-27.75	0	0	1	0	0	0	0
3018	3016	150.25	-27.75	0	0	1	0	0	0	0
3019	3017	150.75	-27.75	0	0	1	0	0	0	0
3020	3018	151.25	-27.75	0	0	0	0	0	0	0
3021	3019	151.75	-27.75	0	0	0	0	0	0	0
3022	3020	152.25	-27.75	0	0	0	0	0	0	0
3023	3021	152.75	-27.75	0	0	0	0	1	0	0
3024	3022	153.25	-27.75	0	0	0	0	0	0	0

COLUMNS = SPECIES

Understand PAM as a data model

	А	В	С	BNH	BNI	BNJ	BNK	BNL	BNM	BNN
1				Colobanthus apetalus	Colobanthus affinis	Rhagodia spinescens	Atriplex limbata	Einadia hastata	Atriplex incrassata	Atriplex nana
3006	3004	144.25	-27.75	0	0	1	1	0	0	0
3007	3005	144.75	-27.75	0	0	1	1	0	0	0
3008	3006	145.25	-27.75	0	0	1	1	0	0	0
3009	3007	145.75	-27.75	0	0	1	1	0	0	0
3010	3008	146.25	-27.75	0	0	1	0	0	0	0
3011	3009	146.75	-27.75	0	0	1	0	0	0	0
3012	3010	147.25	-27.75	0	0	1	0	0	0	0
3013	3011	147.75	-27.75	0	0	1	0	0	0	0
3014	3012	148.25	-27.75	0	0	1	0	0	0	0
3015	3013	148.75	-27.75	0	0	1	0	0	0	0
3016	3014	149.25	-27.75	0	0	1	0	0	0	0
3017	3015	149.75	-27.75	0	0	1	0	0	0	0
3018	3016	150.25	-27.75	0	0	1	0	0	0	0
3019	3017	150.75	-27.75	0	0	1	0	0	0	0
3020	3018	151.25	-27.75	0	0	0	0	0	0	0
3021	3019	151.75	-27.75	0	0	0	0	0	0	0
3022	3020	152.25	-27.75	0	0	0	0	0	0	0
3023	3021	152.75	-27.75	0	0	0	0	1	0	0
3024	3022	153.25	-27.75	0	0	0	0	0	0	0

Understand PAM as a data model

	А	В	С	BNH	BNI	BNJ	BNK	BNL	BNM	BNN
1				Colobanthus apetalus	Colobanthus affinis	Rhagodia spinescens	Atriplex limbata	Einadia hastata	Atriplex incrassata	Atriplex nana
3006	3004	144.25	-27.75	0	0	1	1	0	0	0
3007	3005	144.75	-27.75	0	0	1	1	0	0	0
3008	3006	145.25	-27.75	0	0	1	1	0	0	0
3009	3007	145.75	-27.75	0	0	1	1	0	0	0
3010	3008	146.25	-27.75	0	0	1	0	0	0	0
3011	3009	146.75	-27.75	0	0	1	0	0	0	0
3012	3010	147.25	-27.75	0	0	1	0	0	0	0
3013	3011	147.75	-27.75	0	0	1	0	0	0	0
3014	3012	148.25	-27.75	0	0	1	0	0	0	0
3015	3013	148.75	-27.75	0	0	1	0	0	0	0
3016	3014	149.25	-27.75	0	0	1	0	0	0	0
3017	3015	149.75	-27.75	0	0	1	0	0	0	0
3018	3016	150.25	-27.75	0	0	1	0	0	0	0
3019	3017	150.75	-27.75	0	0	1	0	0	0	0
3020	3018	151.25	-27.75	0	0	0	0	0	0	0
3021	3019	151.75	-27.75	0	0	0	0	0	0	0
3022	3020	152.25	-27.75	0	0	0	0	0	0	0
3023	3021	152.75	-27.75	0	0	0	0	1	0	0
3024	3022	153.25	-27.75	0	0	0	0	0	0	0

Understand PAM as a data model

Webinar 8

SITES

COLUMNS = SPECIES

Exploring Concepts: Calculate Statistics

Calculate statistics for a PAM

	Α	Q	R	S	Т	U
POLYGONAL	1 WKT	alpha	alpha proportional	phi	phi average proportional	Phylogenetic Diversity
	1126 POLYGON ((128.0 -16.5,128.5 -16.5,128.5 -17.0,128 -17,128.0 -16.5))	133	0.028106509	71141	0.217791017	5521.499304
	1127 POLYGON ((128.5 -16.5,129.0 -16.5,129 -17,128.5 -17.0,128.5 -16.5))	113	0.023879966	56207	0.202527313	4701.04883
	1128 POLYGON ((129.0 -16.5,129.5 -16.5,129.5 -17.0,129 -17,129.0 -16.5))	157	0.03317836	72464	0.18792921	5889.895471
	1129 POLYGON ((129.5 -16.5,130.0 -16.5,130 -17,129.5 -17.0,129.5 -16.5))	126	0.026627219	64510	0.208462592	5196.282523
	POLYGON ((130.0 -16.5,130.5 -16.5,130.5 -17.0,130 -17,130.0 -16.5))	198	0.041842773	84780	0.174341131	6730.982417
	1131 POLYGON ((130.5 -16.5,131.0 -16.5,131 -17,130.5 -17.0,130.5 -16.5))	137	0.028951817	67097	0.199413324	5427.129703
	1132 POLYGON ((131.0 -16.5,131.5 -16.5,131.5 -17.0,131 -17,131.0 -16.5))	125	0.026415892	60062	0.195641694	5159.118098
	1133 POLYGON ((131.5 -16.5,132.0 -16.5,132 -17,131.5 -17.0,131.5 -16.5))	119	0.025147929	61572	0.210672543	5106.485991
	1134 POLYGON ((132.0 -16.5,132.5 -16.5,132.5 -17.0,132 -17,132.0 -16.5))	192	0.04057481	94409	0.200209097	6900.66665
	1135 POLYGON ((132.5 -16.5,133.0 -16.5,133 -17,132.5 -17.0,132.5 -16.5))	181	0.038250211	89027	0.200269494	6556.122268
	1136 POLYGON ((133.0 -16.5,133.5 -16.5,133.5 -17.0,133 -17,133.0 -16.5))	105	0.022189349	68413	0.265290057	4577.727162
	1137 POLYGON ((133.5 -16.5,134.0 -16.5,134 -17,133.5 -17.0,133.5 -16.5))	138	0.029163145	73761	0.217630293	5495.218733
	1138 POLYGON ((134.0 -16.5,134.5 -16.5,134.5 -17.0,134 -17,134.0 -16.5))	173	0.036559594	88123	0.207402892	6418.042032
	1139 POLYGON ((134.5 -16.5,135.0 -16.5,135 -17,134.5 -17.0,134.5 -16.5))	161	0.034023669	81369	0.205780747	6145.732
	1140 POLYGON ((135.0 -16.5,135.5 -16.5,135.5 -17.0,135 -17,135.0 -16.5))	176	0.037193576	84444	0.195356455	6605.793222
	1141 POLYGON ((135.5 -16.5,136.0 -16.5,136 -17,135.5 -17.0,135.5 -16.5))	189	0.039940828	84509	0.18205927	7239.173472
	1142 POLYGON ((136.0 -16.5,136.5 -16.5,136.5 -17.0,136 -17,136.0 -16.5))	203	0.042899408	83290	0.167058455	7733.054866
	1143 POLYGON ((136.5 -16.5,137.0 -16.5,137 -17,136.5 -17.0,136.5 -16.5))	205	0.043322063	82496	0.163851593	7674.844733
	1144 POLYGON ((137.0 -16.5,137.5 -16.5,137.5 -17.0,137 -17,137.0 -16.5))	216	0.045646661	82580	0.155665641	8027.774269

Biotophy

Exploring Concepts: Calculate Statistics

Heat map created with **QGIS to display** alpha diversity!

File needs to be a **GEOJson to be** read in QGIS!

Time to Exercise!

What happens when there is a large dataset? Should we calculate diversity statistics one taxon at a time?

We use BiotaPhy tools to automate calculating diversity statistics for

31

Download for the first time OR update the tutorials repository

containing test data and configurations.

Initial download:

git clone <u>https://github.com/biotaphy/tutorials</u> Update tutorial:

> cd tutorials git pull

Let's put the automated framework developed by BiotaPhy to the test! 3 steps:

- 1. Build a grid to analyze a multi-species dataset
- 2. Encode layers into a Presence-Absence matrix (PAM) for multispecies analysis
- 3. Calculate statistics for a PAM

	Steps	Sub-steps						
		Data Preparation	Run Tutorial	Inspect Output				
1	Build a grid	1. Script parameter file	\checkmark	\checkmark				
2	Encode Layers	 Encoding layers Script parameter file 	\checkmark	\checkmark				
3	Calculate statistics	1. Script parameter file	\checkmark	\checkmark				

	Steps	Sub-steps						
		Data Preparation	Run Tutorial	Inspect Output				
1	Build a grid	1. Script parameter file	\checkmark	\checkmark				
2	Encode Layers	 Encoding layers Script parameter file 	\checkmark	\checkmark				
3	Calculate statistics	1. Script parameter file	\checkmark	\checkmark				

	Steps	Sub-ste	ps	
		Data Preparation	Run Tutorial	Inspect Output
1	Build a grid	1. Script parameter file	\checkmark	\checkmark
2	Encode Layers	 Encoding layers Script parameter file 	\checkmark	\checkmark
3	Calculate statistics	1. Script parameter file	\checkmark	\checkmark

Data Preparation: Build a Grid

Step 1: Build a grid

Data preparation: Script parameter file

A JSON parameter file is required for this command. The tutorial parameter file is build_grid.json. These are the required and optional parameters:

- Required:
 - grid_filename: The relative or absolute path for the output grid.
 - min_x: The minimum value for X (longitude) coordinate of the grid
 - min_y: The minimum value for Y (latitude) coordinate of the grid.
 - max_x: The maximum value for X (longitude) coordinate of the grid.
 - max_y: The maximum value for Y (latitude) coordinate of the grid.
 - cell_size: The size of each cell (in units indicated by EPSG).
 - epsg: The EPSG code for the new grid.

- "log_console": true,
- "report_filename": "/volumes/output/build_grid.rpt",
- "grid_filename": "/volumes/output/grid_na_5deg.shp",
- "min_x": -164,
- "min_y": 15,
- "max_x": -53,
- "max_y": 64,
- "cell_size": 5.0,
- "epsg": 4326

Webinar 8

Data Preparation: Build a Grid

Step 1: Build a grid

Data preparation: Script parameter file

A JSON parameter file is required for this command. The tutorial parameter file is build_grid.json. These are the required and optional parameters:

 Optional * log_filename: Output filename to write logging data * log_console: 'true' to write log to console * report_filename: output filename with data modifications made by wranglers

> "log_filename": "/volumes/output/build_grid.log", "log_console": true, "report_filename": "/volumes/output/build_grid.rpt", "grid_filename": "/volumes/output/grid_na_5deg.shp", "min_x": -164, "min_y": 15, "max_x": -53, "max_y": 64, "cell_size": 5.0, "epsg": 4326

Webinar 8

Let's run this tutorial: Build a Grid

Run build_grid command

Initiate the process with the following:

For Linux/Mac systems:

./run_tutorial.sh build_grid data/config/build_grid.json

For Windows systems:

./run_tutorial.bat build_grid data/config/build_grid.json

Remember, you will RUN this code in the terminal or in a similar environment (for Windows)!

Webinar 8

Goal: build a grid to analyze a multi-species dataset

Let's look at the output: Build a Grid

Output

The build_grid tool outputs a grid in shapefile format, conforming to the arguments specified in the configuration JSON file.

THE OUTPUT IS SOLELY A GRID. AT THIS POINT, NO TYPE OF DATA WILL BE CONTAINED IN IT!

Step 2: Encode species layers

Input: Layers

Layers are specified in the Script parameter file, described fully in the next section. Each layer of a PAM represents the presence or absence of a taxon in the set of gridcells used in the analysis. Presence or absence is calculated with the min_coverage, min_presence, and max_presence parameters also detailed in the Script parameter file.

If you want to define different values for computing different layers, you can create a matrix from each set of layers that share parameters (each matrix created with a different configuration file containing different parameters and the same grid), then aggregate the matrices in another step.

Webinar 8

Data preparation: Script parameter file

An example json file for running the encode_layers tutorial is at encode_layers.json. These are the required and optional parameters:

Required:

- grid_filename: Relative path to shapegrid to use for site geometries
- out_matrix_filename: Relative path to write the encoded matrix_
- encode_method: The only valid option for creating a PAM is "presence absence". Other options "biogeo", "largest_class", "mean_value", are used for a different types of matrices and operations.

```
"log_filename": "/volumes/output/encode_layers.log",
"log_console": true,
"report_filename": "/volumes/output/encode_layers.rpt",
"encode_method": "presence_absence",
"min_coverage": 25,
"min_presence": 0.1,
"max_presence": 0.1,
"grid_filename": "/volumes/data/input/grid_na_5deg.shp",
"out_matrix_filename": "/volumes/output/heuchera_pam.lmm",
"layer_file_pattern": "/volumes/data/input/heuchera_rfolk_sdm/*/*.asc"
```

Webinar 8

Data preparation: Script parameter file

An example json file for running the encode_layers tutorial is at encode_layers.json. These are the required and optional parameters:

Required:

- grid_filename: Relative path to shapegrid to use for site geometries
- **out_matrix_filename**: Relative path to write the encoded matrix
- encode_method: The only valid option for creating a PAM is "presence_absence". Other options "biogeo", "largest_class", "mean_value", are used for a different types of matrices and operations.

```
"log_filename": "/volumes/output/encode_layers.log",
"log_console": true,
"report_filename": "/volumes/output/encode_layers.rpt",
"encode_method": "presence_absence",
"min_coverage": 25,
"min_presence": 0.1,
"max_presence": 0.1,
"grid_filename": 1.0,
"grid_filename": 1.0,
"grid_filename": "/volumes/data/input/grid_na_5deg.shp",
"out_matrix_filename": "/volumes/output/heuchera_pam.lmm",
"layer_file_pattern": "/volumes/data/input/heuchera_rfolk_sdm/*/*.asc"
```

Webinar 8

Data preparation: Script parameter file

An example json file for running the encode_layers tutorial is at encode_layers.json. These are the required and optional parameters:

- Optional
 - min_coverage: Minimum percentage of a cell that has to be covered to encode it
 - min_presence: Minimum value to be considered present when encoding presence absent
 - max_presence: Maximum value to be considered present
 - layer: list of a

Webinar 8

- layer filename
- (optional) label for the encoded layer in the output matrix. If no label is provided for a layer file, the program will first look for another file in the same directory with the same basename, and with the extension ".label". If this Defaults to the the first line of a file in the same directory and with the same basename as lyr_filename and a ".label" extension, OR the basename of the layer file.
- (optional) attribute. Defaults to None, using the pixel value for raster data.
- layer_file_pattern: File pattern that describes one or more input files.
- log_filename: Output filename to write logging data
- $\circ~$ log_console: 'true' to write log to console
- $\circ~\ensuremath{\textbf{report_filename}}$ output filename with data modifications made by wranglers

"log_filename": "/volumes/output/encode_layers.log", "log_console": true, "report_filename": "/volumes/output/encode_layers.rpt", "encode_method": "presence_absence", "min_coverage": 25, "min_presence": 0.1, "max_presence": 0.1, "max_presence": 1.0, "grid_filename": "/volumes/data/input/grid_na_5deg.shp", "out_matrix_filename": "/volumes/output/heuchera_pam.lmm", "layer_file_pattern": "/volumes/data/input/heuchera_rfolk_sdm/*/*.asc"

Data preparation: Script parameter file

An example json file for running the encode_layers tutorial is at encode_layers.json. These are the required and optional parameters:

- Optional
 - min_coverage: Minimum percentage of a cell that has to be covered to encode it
 - min_presence: Minimum value to be considered present when encoding presence absence
 - max_presence: Maximum value to be considered present
 - layer: list of a
 - layer filename
 - (optional) label for the encoded layer in the output matrix. If no label is provided for a layer file, the program will first look for another file in the same directory with the same basename, and with the extension ".label". If this Defaults to the the first line of a file in the same directory and with the same basename as lyr_filename and a ".label" extension, OR the basename of the layer file.
 - (optional) attribute. Defaults to None, using the pixel value for raster date
 - layer_file_pattern: File pattern that describes one or more input files.
 - log_filename: Output filename to write logging data
 - log_console: 'true' to write log to console
 - report_filename: output filename with data modifications made by wranglers

Webinar 8

"log_filename": "/volumes/output/encode_layers.log", "log_console": true, "report_filename": "/volumes/output/encode_layers.rpt", "encode_method": "presence_absence", "min_coverage": 25, "min_presence": 0.1, "max_presence": 0.1, "grid_filename": 1.0, "grid_filename": "/volumes/data/input/grid_na_5deg.shp", "out_matrix_filename": "/volumes/output/heuchera_pam.lmm", "layer_file_pattern": "/volumes/data/input/heuchera_rfolk_sdm/*/*.asc"

Data preparation: Script parameter file

An example json file for running the encode_layers tutorial is at encode_layers.json. These are the required and optional parameters:

- Optional
 - min_coverage: Minimum percentage of a cell that has to be covered to encode it
 - min_presence: Minimum value to be considered present when encoding presence absence
 - max_presence: Maximum value to be considered present
 - layer: list of a
 - layer filename
 - (optional) label for the encoded layer in the output matrix. If no label is provided for a layer file, the program will first look for another file in the same directory with the same basename, and with the extension ".label". If this Defaults to the the first line of a file in the same directory and with the same basename as lyr_filename and a ".label" extension, OR the basename of the layer file.
 - (optional) attribute. Defaults to None, using the pixel value for raster data.
 - layer_file_pattern: File pattern that describes one or more input files.
 - log_filename: Output filename to write logging data
 - log_console: 'true' to write log to console
 - report_filename: output filename with data modifications made by wranglers 4

{
 "log_filename": "/volumes/output/encode_layers.log",
 "log_console": true,
 "report_filename": "/volumes/output/encode_layers.rpt",
 "encode_method": "presence_absence",
 "min_coverage": 25,
 "min_presence": 0.1,
 "max_presence": 0.1,
 "grid_filename": "/volumes/data/input/global_2deg_grid.shp",
 "out_matrix_filename": "/volumes/output/encode_layers.lmm",
 "layer_file_pattern": "/volumes/data/easy_bake/heuchera_sdm/*/*.asc"
}

Webinar 8

47

Let's run this tutorial: Encode Layers Biotethy

Run encode_layers command

Initiate the process with the following:

For Linux/Mac systems:

./run_tutorial.sh encode_layers data/config/encode_layers.json

For Windows systems:

Webinar 8

./run_tutorial.bat encode_layers data/config/encode_layers.json

Note: You may get the following warning. This indicates that there is a window with no values, a common occurrence in most datasets, and may be safely ignored.

```
RuntimeWarning: Mean of empty slice
window_mean = np.nanmean(window[np.where(window != nodata)])
```

Goal: Encode Layers into a Presence-Absence matrix (PAM) for multi-species analysis

> Remember, you will RUN this code in the terminal or in a similar environment (for Windows)!

Let's look at the output: Encode Layers

Biotophy

	А	В	С	BNH	BNI	BNJ	BNK	BNL	BNM	BNN
1				Colobanthus apetalus	Colobanthus affinis	Rhagodia spinescens	Atriplex limbata	Einadia hastata	Atriplex incrassata	Atriplex nana
3006	3004	144.25	-27.75	0	0	1	1	0	0	0
3007	3005	144.75	-27.75	0	0	1	1	0	0	0
3008	3006	145.25	-27.75	0	0	1	1	0	0	0
3009	3007	145.75	-27.75	0	0	1	1	0	0	0
3010	3008	146.25	-27.75	0	0	1	0	0	0	0
3011	3009	146.75	-27.75	0	0	1	0	0	0	0
3012	3010	147.25	-27.75	0	0	1	0	0	0	0
3013	3011	147.75	-27.75	0	0	1	0	0	0	0
3014	3012	148.25	-27.75	0	0	1	0	0	0	0
3015	3013	148.75	-27.75	0	0	1	0	0	0	0
3016	3014	149.25	-27.75	0	0	1	0	0	0	0
3017	3015	149.75	-27.75	0	0	1	0	0	0	0
3018	3016	150.25	-27.75	0	0	1	0	0	0	0
3019	3017	150.75	-27.75	0	0	1	0	0	0	0
3020	3018	151.25	-27.75	0	0	0	0	0	0	0
3021	3019	151.75	-27.75	0	0	0	0	0	0	0
3022	3020	152.25	-27.75	0	0	0	0	0	0	0
3023	3021	152.75	-27.75	0	0	0	0	1	0	0
3024	3022	153.25	-27.75	0	0	0	0	0	0	0

Data Preparation: Calculate Statistics

Step 3: Calculate statistics for a PAM

Now that a grid has been built, and a PAM has been populated by intersecting species distribution models with the grid, we calculate biogeographic statistics on that PAM.

Data preparation: Script parameter file

An example JSON file for running the calculate_pam_stats command is at calculate_pam_stats.json.

These are the required and optional parameters:

• Required:

• pam_filename: The full filename to the input PAM file

```
"log_filename": "/volumes/output/calculate_pam_stats.log",
"log_console": true,
"report_filename": "/volumes/output/calculate_pam_stats.rpt",
"covariance_matrix": "/volumes/output/covariance.lmm",
"diversity_matrix": "/volumes/output/diversity.lmm",
"site_stats_matrix": "/volumes/output/site_stats.lmm",
"species_stats_matrix": "/volumes/output/species_stats.lmm",
```

Webinar 8

BiotePhy

Data Preparation: Calculate Statistics

Data preparation: Script parameter file

An example JSON file for running the calculate_pam_stats command is at calculate_pam_stats.json. These are the required and optional parameters:

- Optional
 - log_filename: Output filename to write logging data
 - log_console: 'true' to write log to console
 - report_filename: output filename with summary
 - **covariance_matrix**: The full path and base filename for writing covariance matrices.
 - **diversity_matrix**: The full filename for writing the diversity matrix.
 - site_stats_matrix: The full filename for writing the site statistics matrix.
 - species_stats_matrix: The full filename for writing the species statistics matrix.
 - tree_filename: The full filename to an input tree in Nexus format.
 - tree_matrix: The full filename to an input tree encoded as a matrix.

- "log_filename": "/volumes/output/calculate_pam_stats.log",
 "log_console": true,
- "report_filename": "/volumes/output/calculate_pam_stats.rpt", "covariance_matrix": "/volumes/output/covariance.lmm", "diversity_matrix": "/volumes/output/diversity.lmm", "site_stats_matrix": "/volumes/output/site_stats.lmm", "species_stats_matrix": "/volumes/output/species_stats.lmm", "pam_filename": "/volumes/data/input/heuchera_pam.lmm"

Data Preparation: Calculate Statistics

Data preparation: Script parameter file

An example JSON file for running the calculate_pam_stats command is at calculate_pam_stats.json.

These are the required and optional parameters:

Optional

- log_filename: Output filename to write logging data
- log_console: 'true' to write log to console
- report_filename: output filename with summary
- covariance_matrix: The full path and base filename for writing covariance matrices.
- **diversity_matrix**: The full filename for writing the diversity matrix.
- site_stats_matrix: The full filename for writing the site statistics matrix.
- species_stats_matrix: The full filename for writing the species statistics matrix.
- tree_filename: The full filename to an input tree in Nexus format.
- tree_matrix: The full filename to an input tree encoded as a matrix.

"log_filename": "/volumes/output/calculate_pam_stats.log", "log_console": true,

"report_filename": "/volumes/output/calculate_pam_stats.rpt", "covariance_matrix": "/volumes/output/covariance.lmm", "diversity_matrix": "/volumes/output/diversity.lmm", "site_stats_matrix": "/volumes/output/site_stats.lmm", "species_stats_matrix": "/volumes/output/species_stats.lmm", "pam_filename": "/volumes/data/input/heuchera_pam.lmm"

Let's run this tutorial: Calculate Statistics

Run calculate_pam_stats command

Initiate the calculate_pam_stats process with the following:

For Linux/Mac systems

./run_tutorial.sh calculate_pam_stats data/config/calculate_pam_stats.json

For Windows systems

Webingr 8

./run_tutorial.bat calculate_pam_stats data/config/calculate_pam_stats.json

Remember, you will RUN this code in the terminal or in a similar environment (for Windows)!

Goal: Calculate Statistics for a PAM

Let's look at the output: Calculate Statistics Biotechy

Output

The calculate_pam_stats tool outputs computes various statistics, depending on the output files specified in the command configuration file. Outputs may include:

- 1. A "report_filename" named in the script parameter file, a summary of point manipulations by each wrangler will be written to this file.
- 2. A "log_filename" named in the script parameter file, that will be created.
- 3. A "log_console" named in the script parameter file, logs will be written to the

command prompt during execution.

- 4. One or more "covariance_matrix" files. Each covariance statistic produces a matrix and it is written to the covariance_matrix filename, where the statistic name is appended to the end of the base file name.
- 5. A "diversity_matrix" containing different diversity statistics.
- 6. A "site_stats_matrix" containing site statistics.
- 7. A "species_stats_matrix" containing species statistics.

Webinar 8

Let's look at the output: Calculate Statistics Biotechy/

Diversity Matrix!

	A	Q	R	S	Т	U
1	WKT	alpha	alpha proportional	phi	phi average proportional	Phylogenetic Diversity
1126	5 POLYGON ((128.0 -16.5,128.5 -16.5,128.5 -17.0,128 -17,128.0 -16.5))	133	0.028106509	71141	0.217791017	5521.499304
1127	POLYGON ((128.5 -16.5,129.0 -16.5,129 -17,128.5 -17.0,128.5 -16.5))	113	0.023879966	56207	0.202527313	4701.04883
1128	³ POLYGON ((129.0 -16.5,129.5 -16.5,129.5 -17.0,129 -17,129.0 -16.5))	157	0.03317836	72464	0.18792921	5889.895471
1129	POLYGON ((129.5 -16.5,130.0 -16.5,130 -17,129.5 -17.0,129.5 -16.5))	126	0.026627219	64510	0.208462592	5196.282523
1130	POLYGON ((130.0 -16.5,130.5 -16.5,130.5 -17.0,130 -17,130.0 -16.5))	198	0.041842773	84780	0.174341131	6730.982417
1131	POLYGON ((130.5 -16.5,131.0 -16.5,131 -17,130.5 -17.0,130.5 -16.5))	137	0.028951817	67097	0.199413324	5427.129703
1132	2 POLYGON ((131.0 -16.5,131.5 -16.5,131.5 -17.0,131 -17,131.0 -16.5))	125	0.026415892	60062	0.195641694	5159.118098
1133	³ POLYGON ((131.5 -16.5,132.0 -16.5,132 -17,131.5 -17.0,131.5 -16.5))	119	0.025147929	61572	0.210672543	5106.485991
1134	⁴ POLYGON ((132.0 -16.5,132.5 -16.5,132.5 -17.0,132 -17,132.0 -16.5))	192	0.04057481	94409	0.200209097	6900.66665
1135	⁵ POLYGON ((132.5 -16.5,133.0 -16.5,133 -17,132.5 -17.0,132.5 -16.5))	181	0.038250211	89027	0.200269494	6556.122268
1136	⁵ POLYGON ((133.0 -16.5,133.5 -16.5,133.5 -17.0,133 -17,133.0 -16.5))	105	0.022189349	68413	0.265290057	4577.727162
1137	7 POLYGON ((133.5 -16.5,134.0 -16.5,134 -17,133.5 -17.0,133.5 -16.5))	138	0.029163145	73761	0.217630293	5495.218733
1138	³ POLYGON ((134.0 -16.5,134.5 -16.5,134.5 -17.0,134 -17,134.0 -16.5))	173	0.036559594	88123	0.207402892	6418.042032
1139	POLYGON ((134.5 -16.5,135.0 -16.5,135 -17,134.5 -17.0,134.5 -16.5))	161	0.034023669	81369	0.205780747	6145.732
1140	POLYGON ((135.0 -16.5,135.5 -16.5,135.5 -17.0,135 -17,135.0 -16.5))	176	0.037193576	84444	0.195356455	6605.793222
1141	1 POLYGON ((135.5 -16.5,136.0 -16.5,136 -17,135.5 -17.0,135.5 -16.5))	189	0.039940828	84509	0.18205927	7239.173472
1142	2 POLYGON ((136.0 -16.5,136.5 -16.5,136.5 -17.0,136 -17,136.0 -16.5))	203	0.042899408	83290	0.167058455	7733.054866
1143	³ POLYGON ((136.5 -16.5,137.0 -16.5,137 -17,136.5 -17.0,136.5 -16.5))	205	0.043322063	82496	0.163851593	7674.844733
1144	POLYGON ((137.0 -16.5,137.5 -16.5,137.5 -17.0,137 -17,137.0 -16.5))	216	0.045646661	82580	0.155665641	8027.774269

Session Summary, Q&A and Discussion Biothy

- 1. Alpha, beta and gamma diversity are commonly used diversity metrics. Be careful with interpretation and rely on recent literature for help!
- 2. Presence-Absence Matrices (PAMs) are a great way to optimize diversity statistics involving multiple species!
- 3. Three steps must be followed to use PAMs:
 - Build a grid
 - Encode layers
 - Calculate statistics

Session Summary, Q&A and Discussion Biothy

Any questions??

Please, use the chat to write your question!

