

Webinar Series

Data Use Skills Featuring Data from Natural History Collections

September 21-November 30, 2022

https://www.idigbio.org/content/biotaphy-2022-webinar-series

iDigBio:

https://www.idigbio.org/content/biotaphy-2022-webinar-series

iDigBio.org

Thank You

Maria Cortez Aimee Stewart

Jill Goodwin Gil Nelson

Webinar 7

Species Distribution Models: Interpretation and Ancestral Niche Reconstruction

Goals

Learn how to interpret species distribution models build using Maxent, and how to perform ancestral niche reconstruction

Webinar 7

Learning Objectives

Biological Objectives:

Assess species distribution models

Interpret species distribution models

Learn a method of ancestral niche reconstruction

Technical Objectives:

Go over Maxent HTML outputs

Format and requirements for ancestral niche reconstruction

Webinar organization

- 1. SDM interpretation
- 2. Exploring Concepts: Ancestral niche
- 3. Practical

Webinar 7

Assessment metrics

- How do you know the SDM (species distribution model) is telling you something meaningful?
- How do you know which environmental variables drive the model?

Standard assessment metrics

- AUC Area Under the Curve
 - Plot sensitivity (true positive rate) vs. 1 –
 specificity (false positive rate)
 - Given a false positive classification threshold (x axis), predicted true positive rate

• 1:1 line is random performance

Predicted omission •

- Omission plot
 - Less commonly used
 - Omission means a sample is present but was not predicted by the model
 - 1:1 line is an ideal model higher threshold, more omission

- Variable importance
 - Many ways to measure, but all are vulnerable to collinearity
 - Temperature and precipitation variables are highly correlated, so importance is not independent

- Response curves
 - Shows what the model is actually doing –
 probability of presence expressed in terms
 of one variable
 - Often un-biological shapes due to model's response to collinearity

Standard assessment metrics

- Response curves
 - Maxent also reports response curves for a model with only one variable
 - Doesn't use full information in model

Webinar 7

- Jackknife
 - Standard stats meaning leave-one-out analysis
 - Most straightforward interpretation
 - Especially without variable (teal) notice leaving variables out sometimes results in a lot of lost information, other times not

- Replication
 - Randomly divide test and training data multiple times
 - Maxent allows multiple strategies
 - Allows for uncertainty estimation

Summary

- Be careful interpreting in terms of physiology
- Use multiple means of assessment
- Use replication
- Focus on the question extrapolation and niche limits are harder to estimate, centroid is easy

Going back in time

- Hindcasting: Project model predictions onto past climate
- Our predictions could be very wrong if niche has evolved through time
- Our predictions are irrelevant if modern species did not exist back then

Webinar 7

Ancestral niche

Reconstruction of the niche of a hypothetical ancestor

Scenario

 Question about the past, too far in the past to hindcast a current species' distribution

Ancestral niche

- Uses SDM outputs directly in the form of environmental responses
- Similar but also dissimilar to standard character reconstruction
- Focus is on variance in niche ("niche breadth"), not just the most likely value ("centroid")

Ancestral niche

- Multiple methods
- Available packages:
 - phyloclim (R package, available on CRAN)
 - ambitus (available at https://github.com/ryanafolk/ambitus)

Different modes of thinking

- E-space: The area of the environment a species occupies
 - Only need a tree and SDMs, many applications
- G-space: The area of the Earth a species occupies
 - Need paleoclimate data too

Exploring Concepts: MaxEnt

Projection

- Model states occurrence probability in terms of environmental conditions, which need not be those that obtain at present
- With the assumption that the relationship between environment and occurrence holds true through time, can predict for any time

Projecting ancestral reconstruction

- Apply reconstructed niche probability to paleoclimatic data
- Three types of statements:
 - Probability
 - Binary (yes or no)
 - Distance (how far from ideal habitat)

Data sources

Pleistocene: late-Holocene, Meghalayan (4.2-0.3 ka), v1.0

Pleistocene: mid-Holocene, Northgrippian (8.326-4.2 ka), v1.0

Pleistocene: early-Holocene, Greenlandian (11.7-8.326 ka), v1.0

Pleistocene: Younger Dryas Stadial (12.9-11.7 ka), v1.0

Pleistocene: Bølling-Allerød (14.7-12.9 ka), v1.0

Pleistocene: Heinrich Stadial 1 (17.0-14.7 ka), v1.0

Pleistocene: Last Interglacial (ca. 130 ka), v1.0

Pleistocene: MIS19 (ca. 787 ka), v1.0*

Pliocene: mid-Pliocene warm period (3.205 Ma), v1.0*

Pliocene: M2 (ca. 3.3 Ma), v1.0*

SDMs: Before we start

We will be living outside of Docker today – github repositories run directly

Webinar 7 25

SDMs: Before we start ...

To look at Maxent diagnostics download for the first time OR update the tutorials repository.

Initial download:

git clone https://github.com/biotaphy/tutorials

Update tutorial:

cd tutorials

git pull

SDMs: Before we start

Identifying climatic drivers of hybridization in Heuchereae (Saxifragaceae)

"histogram method"
In revision

R.A. Folk*†, M.L. Gaynor*, N.J. Engle-Wrye, B.C. O'Meara, P.S. Soltis, D.E. Soltis, R.P.

Guralnick, S.A. Smith, C.J. Grady, Y. Okuyama

* co-first authors

† author for correspondence, <u>rfolk@biology.msstate.edu</u>

SDMs: Before we start ...

In downloaded repository navigate to tutorials/data/input/heuchera_rfolk_sdm/

Click on .html file to get navigable output

Webinar 7 28

SDMs: Before we start

In downloaded repository navigate to tutorials/data/input/heuchera_rfolk_sdm/

Click on .html file to get navigable output

→ browser

Initial download:

git clone https://github.com/ryanafolk/heuchera_ancestral_niche

For your reference: https://github.com/ryanafolk/pno_calc

Webinar 7

"PNO" (Predicted Niche Occupancy"): environmental variable as predictor, model suitability as response

Α	В	С	D	E	F	G	н		J
Formula Bar	-251	-240.08	-229.16	-218.24	-207.32	-196.4	-185.48	-174.56	-163.64
2 Bensoniella_oregona	0	0	0	0	0	0	0	0	0
3 Conimitella_williamsii	0	0	0	0	0	0	0	0	0
4 Darmera_peltata	0	0	0	0	0	0	0	0	0
Elmera_racemosa	0	0	0	0	0	0	0	0	0
6 Heuchera_abramsii	0	0	0	0	0	0	0	0	0
7 Heuchera_acutifolia	0	0	0	0	0	0	0	0	0
Heuchera_alba	0	0	0	0	0	0	0	0	0
Heuchera_americana	0	0	0	0	0	0	0	0	C
Heuchera_bracteata	0	0	0	0	0	0	0	0	C
1 Heuchera_caroliniana	0	0	0	0	0	0	0	0	C
2 Heuchera_chlorantha	0	0	0	0	0	0	0	0	C
3 Heuchera_cylindrica	0	0	0	0	0	0	0	0	(
4 Heuchera_eastwoodiae	0	0	0	0	0	0	0	0	(
5 Heuchera_elegans	0	0	0	0	0	0	0	0	C
6 Heuchera_glabra	0	0	0	1.52E-07	1.39E-06	6.09E-07	1.60E-06	2.96E-06	1.47E-06
7 Heuchera_glomerulata	0	0	0	0	0	0	0	0	C
8 Heuchera_grossulariifolia	0	0	0	0	0	0	0	0	C
9 Heuchera_hallii	0	0	0	0	0	0	0	0	(
Heuchera_longiflora	0	0	0	0	0	0	0	0	C
Heuchera_longipetala	0	0	0	0	0	0	0	0	C
2 Heuchera_maxima	0	0	0	0	0	0	0	0	(
3 Heuchera_merriamii	0	0	0	0	0	0	0	0	(

31

Tree: Newick format

(((Rodgersia_pinnata:0.103156,Darmera_peltata:0.103156):0.053155,((((Tiarella_trifoliata:0.048043,(Tiarella_polyphyll

Paleoclimatic data: See paper in review, contact me with questions about format Optional: Phylogenetic uncertainty (.tsv)

→ terminal

Gen	t_n91 t_	_n92 t_n93	t_n94 t_	n95 t_n96	t_n97 t_	n98 t_n99
1	0.5197541	0.4388296	0.2114912	0.1259142	0.1238122	0.0967981
2	0.5197541	0.4388296	0.2114912	0.1259142	0.1226340	0.0983163
3	0.5197541	0.4388296	0.2114912	0.1259142	0.1226340	0.0975708
4	0.5197541	0.4388296	0.2114912	0.1259142	0.1226340	0.0975708
5	0.5197541	0.4388296	0.2114912	0.1259142	0.1229654	0.0975708
6	0.5197541	0.4388296	0.2114912	0.1259142	0.1229654	0.0975708
7	0.5197541	0.4388296	0.2017740	0.1259142	0.1229654	0.0990773
8	0.5197541	0.4388296	0.2017740	0.1259142	0.1221857	0.0990773
9	0.5197541	0.4388296	0.2017740	0.1259142	0.1221857	0.0990773
10	0.5197541	0.4388296	0.2017740	0.1259142	0.1221857	0.0990773
11	0.5197541	0.4388296	0.1932840	0.1246685	0.1221857	0.0990773
12	0.5197541	0.4388296	0.1870675	0.1246685	0.1221857	0.0990773
13	0.5197541	0.4388296	0.1870675	0.1253817	0.1221857	0.0990773
14	0.5197541	0.4388296	0.1783095	0.1253817	0.1221857	0.0990773
15	0.5197541	0.4388296	0.1783095	0.1253817	0.1221857	0.0990773
16	0.5197541	0.4388296	0.1783095	0.1253817	0.1221857	0.0990773
17	0.5197541	0.4388296	0.1783095	0.1253817	0.1221857	0.0990773
18	0.5197541	0.4388296	0.1776911	0.1253817	0.1221857	0.0990773
19	0.5197541	0.4388296	0.1776911	0.1253817	0.1221857	0.0990773
20	0.5197541	0.4388296	0.1776911	0.1253817	0.1221857	0.0990773
21	0.5197541	0.4552106	0.1747089	0.1253817	0.1225292	0.1001253
22	0.5381017	0.4736103	0.1747089	0.1253817	0.1225292	0.1001253
23	0.5381017	0.4736103	0.1703725	0.1253817	0.1225292	0.1001253
24	0.5381017	0.4736103	0.1703725	0.1253817	0.1225292	0.1001253
25	0.5381017	0.4736103	0.1655152	0.1253817	0.1225292	0.1001253
26	0.5381017	0.4736103	0.1583839	0.1253817	0.1225292	0.1001253
27	0.5381017	0.4736103	0.1583839	0.1253817	0.1225292	0.1001253
28	0.5381017	0.4736103	0.1583839	0.1253817	0.1225941	0.1001253
29	0.5381017	0.4736103	0.1502337	0.1253817	0.1225941	0.1001253

Output

Output

Webinar 7

Session Summary, Q&A and Discussion Biophy

- SDM interpretation
- **SDM** assessment
- Concepts behind ancestral niche reconstruction
- Use of "histogram method"

35

Session Summary, Q&A and Discussion Biomphy

Any questions??

Please use the chat to write your question!

Webinar 7 36