CLAMS IN THE CITY AND SNAILS LOST AT SEA: A FITNESS-FOR-USE ASSESSMENT OF AGGREGATED MARINE BIODIVERSITY DATA

AUSTIN HENDY

PALEOCLIMATIC AND PALEOBIOGEOGRAPHIC IMPLICATIONS OF A
PLEISTOCENE ASSEMBLAGE FROM ANGOLA, TROPICAL WEST AFRICA

Jocelyn Sessa

Pedro Callapez

Pedro Dinis

Austin Hendy

Occurrence data

Legend Localized sample Point sample

Occurrence data from published literature, museum & private collections, and data aggregators

Ocean data

Temperature/salinity data corresponding to these geographic coordinates were downloaded from the World Ocean Database

DATA SOURCES

Data were downloaded from:

- GBIF (Global Biodiversiy Information Facility)
- iDigBio
- OBIS (Ocean Biogeographic Information System)

Georeferencing checked with:

Manual labor (Google Earth Pro, eyeballs, & common sense)

Data matches with:

- WoRMS (taxonomy)
- Marine Regions Gazetteer (marine georeferenced place names & biogeographic boundaries)
- Bio-ORACLE (marine data layers for ecological modelling)

Of >126,000 occurrences screened for errors

- 61% were georeferenced (>77,000 occurrences)
- 38% of those occurrences not georeferenced could be accurately georeferenced
- 1% (1260 occurrences) could not be accurately georeferenced.
- Of those georeferenced, 28% (>22,000 occurrences) were incorrect

Coordinates inconsistent with verbatim geographic descriptions, relative to coastlines, or country or ocean assignments

Three common types of gereferencing errors were observed:

- Use of an inappropriate geographic/political CENTROID (e.g., centroid of a country, state, city)
 37% (8100 occurrences)
- 2. **ROUNDING** to nearest degree of latitude and longitude 21% (4700 occurrences)
- 3. Simply **POOR ESTIMATION** of coordinates; a catch-all for unfathomable georeferencing 40% (8800 occurrences)

Relatively few institutions are responsible for the majority of the errors

- Three U.S. institutions and one European museum had error rates in excess of 20% of their aggregated records
- The Field Museum had an error rate less than 1%

Types of errors are not evenly distributed across institutions

- One institution with 2685 of 3888 incorrectly georeferenced coordinates due to use of inappopriate centroids
- Another institution with 8738 of 14108 incorrectly georeferenced coordinates due to rounding

Error rates for georeferencing of occurrences from Latin American countries are much higher among U.S. & European insitutions

- Occurrences from Costa Rica
 - Local institutions ->0.7%
 - U.S.+European institutions ->18.3%
- Occurrences from Mexico
 - Local institutions -> 8.9%
 - U.S.+European institutions -> 47.3%
- Occurrences from Ecuador
 - U.S.+European institutions -> 23.6%

Local institutions also achieve higher rates of georeferencing than U.S. & European institions

- Occurrences from Colombia
 - Local institutions ->99.4%
 - U.S.+European institutions ->31.5%
- Occurrences from Costa Rica
 - Local institutions -> 99.9%
 - U.S.+European institutions -> 38.4%
- Occurrences from Mexico
 - Local institutions -> 100%
 - U.S.+European institutions -> 76.6%

EXPLANATIONS

Poor estimation and use of inappropriate centroids

- Occur primarily in some of the earliest institutions to make their data available online
- The tools and training were not available at this time.
- Lack of realization of how these data would be used in the future

Coordinate rounding

- Primarily occurs at one institution
- Likely a collection policy (to cloak data) or a quick and easy way to georeference large numbers of localities

Accuracy of local institutions

- Collections composed from field sampling rather than donations
- Knowledge of local geography/oceanography and language

CONSQUENCES

Errors in aggregated data erodes community confidence in all available data!

Three areas require attention:

- Improvement of revision and republication methods for data publishers;
- New and improved methods for documenting different areas of geospatial fitness-for-use;
- Adoption of new technology to increase the speed at which fitness-for-use enhancement can be performed on available data.

GBIF. 2010. GBIF Position Paper on Future Directions and Recommendations for Enhancing Fitness-for- Use Across the GBIF Network, version 1.0. authored by Hill, A. W., Otegui, J., Ariño, A. H., and R. P. Guralnick. 2010

RECOMMENDATIONS

- Use of DWC fields for georeferencing so that downstream users are aware methods, sources, and uncertainties
 - Poor use of protocol (20%), data sources (4%), verification status (4%), and uncertainty (8%) data providers
- Revision and republication of data by relatively few institutions
 - Two institutions responsible for 75% of the incorrectly georeferenced localities data providers
- Improved methods for documenting geospatial data quality
 - Flagging records for researachers and providing feedback to data providers data aggregators
- Greater awareness and development of standards, tools and worfklows for georeferencing marine collecting events.

data aggregators & funding agencies

