

Bernice Pauahi Bishop Museum

World's largest biological collections from the Pacific region

Established in 1889

Natural History Collections

Botany	750,000 specimens
Entomology	14,000,000 specimens
Ichthyology	102,000 specimens
Invertebrate Zoology	552,000 specimens
Malacology	6,000,000 specimens
Vertebrate Zoology	110,000 specimens

Vertebrate Zoology

VZ Digitization Status

100% basic data & georeferenced

Thousands of sound recordings and in-life photos of vouchered specimens 80% basic data & 30% georeferenced

No media specimens

70% basic data & 30% georeferenced

No media specimens

50% remain uncataloged

No media specimens

Getting Started

Collaborating with others to create a Digitization Mission

Identify the goals for your institution, collection, or smaller subset of specimens

Planning Phase

Develop a realistic strategy for accomplishing the goals of your Digitization Mission Execute the Plan

5 Common Task Clusters

Digitization Mission

A few things to consider...

To Image or not to Image?

Is your current
database management
system robust enough
for higher level
digitization?

Which specimens to image?

- Type Specimens?
- Fragile Specimens?
- Frequently Loaned
 Specimens?

What do you want the digitization status of your collection to be in 3-5 years?

How much money is available to you for digitization?

Digitization Mission

Create or join an iDigBio Working Group https://www.idigbio.org/wiki/index.php/IDigBio_Working_Groups

iDigBio (and the people sitting next to you) are here to help

iDigBio Online
resources
https://www.idigb
io.org/wiki/index.
php/Digitization_
Resources

Planning Phase

"Plans are worthless, but planning is everything."

- Dwight D. Eisenhower

Research...
What works at other institutions

Modify existing
workflows and
techniques to fit your
circumstances

- How to bridge potential knowledge gaps between collections staff and IT staff
- How to measure & maintain quality control

Making Your Goals a Reality

5 Common Task Clusters

- Pre-digitization curation and staging
- Specimen image capture
- Specimen image processing
- Electronic data capture
- Georeferencing specimen data

Pre-digitization Curation & Staging

Inspect for and repair specimen damage and evaluate collection health

 Update nomenclature and taxonomic interpretation

 Attach a unique identifier to a specimen, drawer, or cabinet

Treat specimens for pests

Specimen Image Capture

Imaging requires
 significant specimen
 handling with attendant
 opportunities for damage

- Images for morphological study are usually taken at 17 megapixels and above
- Image wet specimens while submerged in alcohol

 Color bar and scale should be visible in all images

Specimen Image Processing

Altering color balance, saturation, sharpness, or other image features =

Slight adjustments of light levels and cropping = OK

Native Camera
Raw

dng OR tif (NOT jpeg)

Electronic Data Capture

Manual Keystroke entry

Voice recognition software

Optical Character Recognition

Electronic transfer from spreadsheets or other delimited lists

Georeferencing Specimen Data

Georeferencing = transforming textual descriptions of geographical data into a pair of X, Y coordinates, with an accompanying estimation of precision.

Geolocate (desktop and webbased interfaces, and web services; http://www.museum.tulane.edu/ge olocate/) and Biogeomancer (webbased; http://bg.berkeley.edu/latest/)

Three Example Workflows

Data to Occasional or Optional Image to Distribution

Most often used in collections in which few or no specimens have been imaged, Probably what most of us are familiar with

Three Example Workflows

Parallel Data/Image to Distribution

Most labor intensive of the three examples Increased specimen handling

Three Example Workflows

Image to Data to Distribution

Fits institutions that image all specimens and capture data from those images